Submmitted March 1997
Published in Computer Vision and Image Understanding, vol.73, no.1, pp.82-98, 1999,
Academic Press

The Visual Analysis of Human Movement:
A Survey

D.M. Gavrila !

Image Understanding Systems
Daimler-Benz Research
Wilhelm Runge St. 11

89081 Ulm, Germany
gavrila@dbag.ulm.DaimlerBenz.com

Abstract

The ability to recognize humans and their activities by vision is key
for a machine to interact intelligently and effortlessly with a human-
inhabited environment. Because of many potentially important appli-
cations, “Looking at People” is currently one of the most active ap-
plication domains in computer vision. This survey identifies a number
of promising applications and provides an overview of recent devel-
opments in this domain. The scope of this survey is limited to work
on whole-body or hand motion; it does not include work on human
faces. The emphasis is on discussing the various methodologies; they
are grouped in 2-D approaches with or without explicit shape models
and 3-D approaches. Where appropriate, systems are reviewed. We
conclude with some thoughts about future directions.

1 Introduction

A new application domain of computer vision has emerged over the past few
years dealing with the analysis of images involving humans. This domain
(sometimes called “Looking at People”) covers, among others, face recogni-
tion, hand gesture recognition and whole-body tracking. The strong interest
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in this domain has been motivated by the desire for improved man-machine
interaction for which there are many promising applications.

One of the general goals of artificial intelligence has been to design ma-
chines which act more intelligently or human-like. Natural language under-
standing, large knowledge bases and sophisticated reasoning have all made
contributions towards reaching this goal, as embodied by the Turing test.
Yet, they provide only a partial solution; for a machine to be truly intelligent
and useful, it requires the ability to perceive the environment in which it is
embedded. It needs to be able to extract information from its environment
independently, rather than rely on information supplied to it externally by
keyboard input (as in the original conception of the Turing test). Perhaps
the most relevant information to be retrieved for interaction is where and
who are the humans in the environment and what are their activities. Here,
computer vision can play an important role. An added benefit of such a
capability is that it makes communication with machines easier for humans,
allowing input modalities such as gestures.

Traditionally, there has been keen interest in human movement from a
wide variety of disciplines. In psychology, there have been the classic studies
on human perception by Johansson [39]. His experiments with moving light
displays (MLD) attached to body parts showed that human observers can
almost instantly recognize biological motion patterns even when presented
with only few of these moving dots. This raised the question whether recog-
nition of moving parts could be achieved directly from motion, without
structure recovery. In the hand gesture area, there have been many studies
on how humans use and interpret gestures; see for example work by McNeill
[52]. Quek [66] has put this in the context of vision-based human-computer
interfaces.

In kinesiology (i.e. biomechanics) the goal has been to develop models
of the human body that explain how it functions mechanically and how
one might increase its movement efficiency. A typical procedure involves
obtaining 3-D joint data, performing kinematic analysis, and computing the
corresponding forces and torques for a movement of interest [12]. 3-D data
is typically obtained in an intrusive manner, e.g. by placing markers on the
human body.

In choreography, there has been long-term interest in devising high-level
descriptions of human movement for the notation of dance, ballet and the-
atre. Some of the more popular notations have been the Labanotation,
the Ekshol-Wachmann and the Effort-Shape notation. Across the variety
of notation systems there has been little consensus, though, what these



general-purpose descriptions should be. Badler and Smoliar [6] provide a
good discussion of these issues.

Computer graphics has dealt with the synthesis of human movement.
This has involved devising realistic models of human bodies for applications
in crash simulations, workplace assessment and entertainment. Some of the
issues have been how to specify spatial interactions and high-level tasks for
the human models; see [5] [6] [50].

The recent interest in vision in the “Looking at People” domain is hardly
surprising. From a technical point of view, this domain is rich and chal-
lenging because of the need to segment rapidly changing scenes in natural
environments involving non-rigid motion and (self) occlusion. A number of
potentially important applications exist; see the next Section. Additional
momentum has been provided by recent technological advances, chief among
them the introduction of real-time capture, transfer and processing of im-
ages on standard hardware systems (e.g. PCs). The extensive coverage in
the vision literature is apparent from the many special workshops devoted
to this topic: the “Looking at People” workshop in Chambery (1994), the
“Motion of Non-Rigid and Articulated Objects” workshop in Austin (1994),
and the two “Automatic Face and Gesture Recognition” workshops in Ziirich
(1995) and Killington (1996). Some of the material has now also reached
the popular scientific press [63].

This papers surveys the work on visual analysis of gestures and whole-
body movement. These are discussed together because of obvious similari-
ties (i.e. both involve articulated structures). Section 2 discusses promising
application scenarios of the “Looking at People” domain in some detail.
Many criteria could be used to classify previous work, for example, the type
of models used (e.g. stick figure-based, volumetric, statistical), the dimen-
sionality of the tracking space (2-D vs. 3-D), sensor modality (e.g. visible
light, infra-red, range), sensor multiplicity (monocular vs. stereo), sensor
placement (centralized vs. distributed) and sensor mobility (stationary vs.
moving). This survey is based on the first two criteria; it distinguishes

e 2-D approaches without explicit shape models (Section 3),
e 2-D approaches with explicit shape models (Section 4), and
e 3-D approaches (Section 5).

These classes do have some overlap. For example, some 2-D approaches
use explicit shape models but also contain some elements of learning or



self-adaptation. Nevertheless, this general classification provides a good
framework for discussion throughout this survey.

Section 6 provides an overview of techniques for human action recog-
nition; it takes a bottom-up view which assumes that all relevant features
have been extracted from the images at this point, i.e. using one of the
approaches of the last three Sections. A general discussion of past work is
given in Section 7 together with some thoughts about future directions. The
conclusions are listed in Section 8.

Face analysis (head pose estimation, face recognition, facial expressions,
lip reading) is not covered by this survey, see for example [83]. Earlier re-
views on non-rigid motion, motion-based recognition and gesture interpre-
tation were given by Aggarwal ef al. [1], Cedras and Shah [14] and Pavlovic,
Sharma and Huang [61], respectively.

2 Applications

There are a number of promising applications in the “Looking at People”
area in computer vision in addition to the general goal of designing a machine
capable of interacting intelligently and effortlessly with a human-inhabited
environment; for a summary see Table 1.

An important application domain is smart surveillance. Here “smart”
describes a system that does more than motion detection, a straightfor-
ward task prone to false alarms (there might be animals wandering around,
wind blowing, etc.). A first capability would be to sense if a human is in-
deed present. This might be followed by face recognition for the purpose
of access control and person tracking across multiple cameras. In other
applications, one needs to determine what a person in the scene is doing,
rather than simply signaling human presence. In a parking lot setting, one
might want to signal suspicious behavior such as wandering around and re-
peatedly looking into cars. Other surveillance settings involve supermarket
or department stores, vending machines, ATMs and traffic. The benefits
of such surveillance applications need in some cases to be balanced with
possible drawbacks, e.g. regarding privacy.

Another application domain is virtual reality. In order to create a pres-
ence in a virtual space one needs to first recover the body pose in the physical
space. Application areas lie in interactive virtual worlds, with the internet
as a possible medium. The development of interactive spaces on the internet
is still in its infancy; it is in the form of “chat rooms” where users navigate



general domain

specific area

virtual reality

interactive virtual worlds

games

virtual studios

character animation
teleconferencing

(e.g. film, advertising, home-use)

“smart” surveillance systems

access control

parking lots

supermarkets, department stores
vending machines, ATMs

traffic

advanced user interfaces

social interfaces

sign-language translation

gesture driven control

signaling in high-noise environments
(airports, factories)

motion analysis

content-based indexing of

sports video footage

personalized training in golf, tennis, etc.
choreography of dance and ballet
clinical studies of orthopedic patients

model-based coding

very low bit-rate video compression

Table 1: Applications

of “Looking at People”




with icons in 2-D spaces while communicating by text. A more enriched
form of interaction with other participants or objects will be possible by
adding gestures, head pose and facial expressions as cues. Other applica-
tions in this domain are games, virtual studios, motion capture for character
animation (synthetic actors) and teleconferencing.

In the user-interface application domain, vision is useful to complement
speech recognition and natural language understanding for a natural and
intelligent dialogue between human and machine. The contribution of vision
to a speech-guided dialogue can be manifold. One can simply determine
if a user is present to decide whether to initiate a dialogue or not. More
detailed cues can be obtained by recognizing who the user is, observing facial
expressions and gestures as the dialogue progresses and perhaps recalling
some of the past interactions. It would certainly be useful to determine who
is talking to whom in case of multiple participants. Vision can also provide
speech recognition with a more accurate input in a noisy environment by
focusing the attention to the spatial location of the user [80]. This is achieved
either by a post-filtering step when using a phased array of microphones or,
more actively, by directing a parabolic microphone to the intended source.
Finally, vision can also prove helpful for phoneme disambiguation, i.e. lip
reading.

An important application area in the user interface domain involves so-
cial interfaces. Social interfaces deal with computer-generated characters,
with “human-like” behaviors, who attempt to interact with users in a more
personable way [80]. Alternative application areas in the user interface do-
main are sign-language translation, gesture driven control of graphical ob-
jects or appliances, and signaling in high-noise environments such as factories
or airports.

In the motion analysis domain, a possible application is content-based
indexing of sports video footage; in a tennis context, one may want to query
a large video archive with “give me all the cases where player X came to the
net and volleyed”. This would eliminate the need for a human to browse
through a large data set. Other applications lie in personalized training
systems for various sports; these systems would observe the skills of the
pupils and make suggestions for improvement. Vision-based human motion
analysis is also useful for choreography of dance and ballet, and furthermore,
for clinical studies in orthopedy.

One final application domain is that of model-based image coding, with
activity centered around the forthcoming MPEG-4 standard. In a video
phone setting, one can track faces in images and code them in more detail



than the background. More ambitiously, one might try to recover a 3-D head
model initially and code only the pose and deformation parameters subse-
quently. It is unclear whether these applications will materialize; the 2-D
head tracking application provides modest compression gains and is specific
to scenes with human faces; the 3-D head (or body) tracking application
has not been solved satisfactory yet. See Aizawa and Huang [2] for a good
overview.

In all the applications discussed above, a non-intrusive sensory method
based on vision is preferable over a (in some cases a not even feasible) method
that relies on markers attached to the bodies of the human subjects or a
method which is based on active sensing.

3 2-D approaches without explicit shape models

One general approach to the analysis of human movement has been to bypass
a pose recovery step altogether and to describe human movement in terms of
simple low-level, 2-D features from a region of interest. Polana and Nelson
[65] refer to “getting your man without finding his body parts”. Models for
human action are then described in statistical terms derived from these low-
level features, or by simple heuristics. The approach without explicit shape
models has been especially popular for applications of hand pose estimation
in sign language recognition and gesture-based dialogue management.

For applications involving the human hand, the region of interest is typi-
cally obtained by background image subtraction or skin color detection. This
is followed by morphological operations to remove noise. The extracted fea-
tures are based on hand shape, movement and/or location of the interest
region. For shape, Freeman et al. [24] use x-y image moments and orien-
tation histograms and Hunter et al. [38] use rotationally invariant Zernike
moments. Others [16] [20] [77] [79] consider the motion trajectories of the
hand centroids. Quek [66] has proposed using shape and motion features
alternatively for the interpretation of hand-gestures. According to Quek,
when the hand is in gross motion, the movements of the individual fingers
are unimportant for gesture interpretation. On the other hand, gestures in
which fingers move with respect to each other will be performed with little
hand motion.

A similar technique to derive low-level features is to superimpose a grid
on the interest region, after a possible normalization of its extent. In each
tile of the grid a simple feature is computed, and these features are combined



to form a K x K feature vector to describe the state of movement at time
t. Polana and Nelson [65] use the sum of the normal flow (see Figure 1),
Yamamoto et al. [86] use the number of foreground pixels and Takahashi
et al. [78] define an average edge vector for each tile. Both Darell and
Pentland [19] and Kjeldsen and Kender [44] use the image pixels directly
as input. The work by Darell and Pentland [19] aims to build view models
automatically by adding views to the model set whenever correlation with
the existing views falls below a certain threshold.

For the above systems, action classification is based on hard-coded de-
cision trees [16] [20] [79], nearest neighbor criteria [38] [65] or is based on
general pattern matching techniques for time-varying data, as described in
Section 6. Some additional constraints on actions can be imposed using a
dialogue structure where the current state limits the possible actions that
can be expected next.

Oren et al. [59] perform object detection in static images. They use
(Haar) wavelet coefficients as low-level intensity features; these coefficients
are obtained by applying a differential operator at various locations, scales
and orientations on the image grid of interest. Many coefficients can be
part of this representation. In a training stage, however, one selects a small
subset of coefficients to represent a desired object, based on considerations
regarding relative strength and positional spread over the images of the
training set. Once it has been established which wavelet coefficients to use
as features, a Support Vector Machine (SVM) classifier is applied to the
training set. During the detection stage, one shifts windows of various sizes
over the image, extracts the selected features and applies the SVM classifier
to verify whether the desired object is present or not. Oren et al. apply this
technique to detecting frontal and rear views of pedestrians; see Figure 2.

Another line of research involves statistical shape models to detect and
track the contours of hands or persons. The work by Cootes et al. [18] uses
“Active Shape Models” for this purpose; these are models derived from a
training stage were example shapes are described in terms of known feature
point locations. Cootes et al. perform principal component analysis on the
feature locations to describe the example shapes using a reduced parameter
set. With this compact representation one obtains, in addition to efficiency,
some degree of generalization over the training set. This can be useful when
tracking deformable shapes; using the new representation one allows, in
essence, only those deformations which are consistent with the training set.
Cootes et al. show some examples of tracking hands. The followed method
also has some drawbacks. Features need to be present at all times (no



occlusions). At initialization, a good initial estimate must be available for
the method to converge properly. And finally, the chosen parametrization
might include states which have implausible physical interpretations.

Baumberg and Hogg [8] apply Active Shape Models to the tracking of
pedestrians. They use a somewhat different shape representation, based
on B-splines; see Figure 3. By assuming a stationary camera, tracking is
initialized on the foreground region; the latter is obtained by background
subtraction. Spatio-temporal control is achieved using a Kalman filter for-
mulation, similar to work by Blake et al. [9].

Recent work by Franke et al. [23] applies principal component analy-
sis on a grid representation of pedestrians. The training set is obtained by
blurring binary images which correspond to pedestrian silhouettes. Princi-
pal component analysis results, as before, in a compact representation of the
training set in terms of various eigenvectors which span a linear sub-space.
See Figure 4: the main variation is captured by the first few eigenvectors
(corresponding to the largest eigenvalues), the 25th eigenvector already con-
tains mostly noise. Pedestrian detection involves shifting windows of various
sizes over the image, normalizing for gradient energy within the window, and
determining the “distance” between the normalized (gradient) data enclosed
by the window and the linear sub-space corresponding to the training set.
One of the advantages of using grid representations (e.g. [23] [59]) is that
dealing with partial occlusion is relatively straightforward.

General-purpose motion-based segmentation and tracking techniques have
also been used for applications such as people tracking. Shio and Sklansky
[75] aim to recover the average 2-D image velocity of pedestrians in a traffic
setting. They obtain a motion field based on correlation techniques over
successive frames. The motion field is smoothed both spatially and tempo-
rally to reduce the effects of non-rigid motion and measurement errors. A
quantization of the field is then followed by an iterative merging step which
results in regions with similar motion direction. Segen and Pingali [73] group
partially-overlapping feature tracks over time in a real-time implementation.
Heisele et al. [32] use groups of pixels as basic units for tracking. Pixels
are grouped by clustering techniques in combined color (R,G,B) and spatial
(x,y) dimensions; the motivation for this is that adding spatial informa-
tion makes clustering more stable than using only color information. The
obtained pixel groups are adapted iteratively from one image to the next
image using a k-means clustering algorithm. Because of the fixed number of
pixel groups and the enforced one-to-one correspondence over time, track-
ing these units is straightforward. Of course, there is no guarantee that



units will remained locked onto the same physical entity during tracking,
but initial results on tracking pedestrians appear promising; see Figure 5.

4 2-D approaches with explicit shape models

This section discusses work which uses explicit a priori knowledge of how the
human body (or hand) appears in 2-D, taking essentially a model- and view-
based approach to segment, track and label body parts. Since self-occlusion
makes the problem quite hard for arbitrary movements, many systems as-
sume a priori knowledge of the type of movement or the viewpoint under
which it is observed. The human figure is typically segmented by back-
ground subtraction, assuming a slowly changing or stationary background
and a fixed camera. The models used are usually stick figures, wrapped
around with ribbons or “blobs”. An example of a ribbon-based 2-D model
is illustrated in Figure 6. The type of the model strongly influences what
features are used for tracking; one can distinguish systems using edges or
ribbons, “blobs” and points.

A number of researchers have analyzed scenes involving human gait par-
allel to the image plane. Geurtz [27] performs hierarchical and articulated
curve fitting with 2-D ellipsoids. Niyogi and Adelson [56] [57] advocate seg-
mentation over time because of robustness; their procedure involves finding
human silhouettes with deformable contours in X-T space [56] or deformable
surfaces in X-Y-T space [57]. See Figure 7. Guo et al. [30] propose obtaining
a 2-D stick figure by obtaining the skeleton of the silhouette of the walking
human and matching it to a model stick figure. They use a combination of
link orientations and joint positions of the obtained stick figure as features
for a subsequent action recognition step. Chang and Huang [15] detect rib-
bons corresponding to the arms and feet. Ju et al. [40] use a parametrized
motion model to analyze gait constrained to a plane. The legs are modeled
a set of connected planar patches.

An early attempt to segment and track body parts under more general
conditions is made by Akita [3]. The assumption made is that the movement
of the human is known a priori in the form of a set of representative stick
figure poses or “key frames”. These would be of help when the tracking of
body parts fails. The foreground figure and its silhouette are easily obtained
given the large dark-light differences. The recognition of body parts proceeds
in the order: legs, head, arms and trunk following the assumption that legs
are the most stable to detect and the trunk the least. Unfortunately, a
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number of unstated simplifications and procedures make evaluation of this
approach difficult.

Without a priori knowledge of the type of movement being performed,
Long and Yang [49] track the limbs of a human silhouette by tracking anti-
parallel lines (apars). They develop methods to deal with the effects of oc-
clusion, i.e. the appearance, disappearance, merging and splitting of apars.
The work by Kurakake and Nevatia [47] is similar. Leung and Yang [48] re-
port progress on the general problem of segmenting, tracking and labeling of
body parts from a silhouette of the human. Their basic body model consists
of five U-shaped ribbons and a body trunk, various joint and mid points,
plus a number of structural constraints, such as support. In addition to the
basic 2-D model, view-based knowledge is defined for a number of generic
human postures (e.g. “side view kneeling model”, “side horse motion”), to
aid the interpretation process. The segmentation of the human silhouette is
done by detecting moving edges. See Figure 8.

Wren et al. [84] take a region-based approach. Their real-time person
finder system “Pfinder” models and tracks the human body using a set of
“blobs”; each blob is described in statistical terms by a spatial (z,y) and
color (Y, U, V) Gaussian distribution over the pixels it consists of (compare
with the shape-color model used in [32]). The blobs typically correspond
to the person’s hands, head, feet, shirt and pants. A statistical model is
also constructed for the background region; here each pixel is described by
a Gaussian distribution in terms of color values. At initialization, the back-
ground model is used to identify a foreground region with pixel values other
than expected given the background model. A model-building process fol-
lows where blobs are placed over the foreground region. This process is
guided by a 2-D contour shape analysis that attempts to identify various
body parts using heuristics. Tracking involves a loop of predicting the ap-
pearance of the person in the new image, determining for each pixel the
likelihood that it is part of one of the blob models or background model,
assigning it to one of the models, and updating the statistical models. See
Figure 9.

Cai and Aggarwal [11] describe a system with a simplified head-trunk
model to track humans across multiple cameras. In this work, tracking
uses point features derived from the medial axis of the foreground region.
Attributes used for tracking are position and velocity of the points, together
with the average intensity of the local neighborhood of the points. The use
of point features has the advantage that the features can be relatively easily
brought into correspondence across multiple cameras, given constraints on
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epipolar geometry. It remains difficult, though, to robustly track points in
long sequences when the points do not correspond to stable features on the
human body.

Finally, Kahn and Swain [41] describe a system which uses multiple cues
(intensity, edge, depth, motion) to detect people pointing laterally. Their
system architecture is quite generic and could be described as being “object-
oriented”; a number of generic objects are defined for a particular application
(e.g. person, background, floor, lights) and visual routines are provided
to detect these in the images. Once various object properties have been
extracted from the image, the objects become “instantiated” and specialized
visual routines apply afterwards.

5 3-D approaches

In this section we discuss work that aims to recover 3-D articulated pose
over time, i.e. joint angles with respect to an object-centered [51] coordinate
system. We will not consider intrusive techniques for motion capture, e.g.
techniques which use markers or active sensing.

The general problem of 3-D motion recovery from 2-D images is quite
difficult. In the case of 3-D human tracking, however, one can take advantage
of the large available a priori knowledge about the kinematic and shape
properties of the human body to make the problem tractable. Tracking also
is well supported by the use of a 3-D shape model which can predict events
such as (self) occlusion and (self) collision.

A general framework for model-based tracking is illustrated in Figure 10,
based on the early work of O’Rourke and Badler [60]. Four main components
are involved: prediction, synthesis, image analysis and state estimation.
The prediction component takes into account previous states up to time ¢
to make a prediction for time ¢ + 1. It is deemed more stable to do the
prediction at a high level (in state space) than at a low level (in image
space), allowing an easier way to incorporate semantic knowledge into the
tracking process. The synthesis component translates the prediction from
the state level to the measurement (image) level, which allows the image
analysis component to selectively focus on a subset of regions and look for
a subset of features. Finally, the state-estimation component computes the
new state using the segmented image. This framework can be applied to
any model-based tracking problem, whether involving a 2-D or 3-D tracking
space. Many of the tracking system discussed in this section follows this
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general framework.

Once 3-D tracking is successfully implemented, one has the benefit of
being able to use the 3-D joint angles as features for subsequent action
matching; these have the advantage to be viewpoint independent and di-
rectly linked to the body pose. Compared to 3-D joint coordinates, joint
angles are less sensitive to variations in the size of humans.

5.1 3-D body modeling

3-D graphical models for the human body generally consist of two compo-
nents: a representation for the skeletal structure (the “stick figure”) and
a representation for the flesh surrounding it. The stick figure is simply a
collection of segments and joint angles with various degree of freedom at the
articulation sites. Relevant rotations are generally described by their three
Euler angles [13] [76].

The representation for the flesh can either be surface-based (e.g. using
polygons) or volumetric (e.g. using cylinders). There is a trade-off between
the accuracy of representation and the number of parameters used in the
model. Many highly accurate surface models have been used in the field
of graphics to model the human body [5], often containing thousands of
polygons obtained from actual body scans. In vision, where the inverse
problem of recovering the 3-D model from the images is much harder and less
accurate, the use of volumetric primitives has been preferred to “flesh out”
the segments because of the lower number of model parameters involved.
After all, human models used for computer vision do not have to meet
the standard of being highly realistic and natural looking as long as their
shape approximates the real human shape well enough to support image
segmentation.

An early example of human modeling is Badler’s “Bubbleman” [60],
where body parts consist of overlapping spheres. Another modeling choice
has involved simple cylindrical primitives (possibly with elliptic XY-cross-
sections) [22] [29] [36] [51] [71]. More accurate modeling of body parts is
obtained using superquadrics [7]; these are generalizations of ellipsoids which
have additional “squareness” parameters along each axis. They include such
diverse shapes as cylinders, spheres, ellipsoids and hyper-rectangles. Su-
perquadrics improve the modeling accuracy for body parts such as the head
and torso and for regions close to articulation sites. Additional flexibility
can be achieved by allowing global deformations (e.g. tapering, bending)
and/or local deformations on the superquadrics [7] [26] [43] [53] [62]. Figure
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11 shows an example of human modeling based on tapered superquadrics
that was used for 3-D model-based tracking in [25] [26].

5.2 3-D pose recovery and tracking

We first discuss approaches which use articulated models to recover 3-D
pose from a monocular image sequence. One possibility is to use a divide-
and-conquer technique, where an articulated object is decomposed into a
number of primitive (rigid or articulated) sub-parts; one solves for motion
and depth of the sub-parts and verifies whether the parts satisfy the neces-
sary constraints. Shakunaga [74] identifies such a set of primitive sub-parts
for which he solves the pose recovery problem using the angles between
projected line features.

To avoid unfavorable combinatorics at the verification step, it is benefi-
cial to propagate constraints from part to part. The primitives of O’Rourke
and Badler [60] are box-shaped regions which represent possible joint loca-
tions in 3-D. These regions are initially constrained by the measurement of
joints in the images (essentially given to the system) and the orthography
assumption. A constraint propagation procedure is then applied based on
the known distances between connected joints. A further verification proce-
dure involves an iterative search procedure, in which angular and collision
constraints are verified using the 3-D model. Each step results in a refine-
ment of the 3-D uncertainty regions of joints; the final regions can be used
for prediction at the next time iteration.

Other work has used perspective projection models. The constraint prop-
agation scheme of Chen and Lee [17] starts at the human head and continues
via the torso to the limbs. An interpretation tree is built to account for the
spatial ambiguity which arises from the fact that there are two possible
poses of a link (of known length) in 3-D which result in the same 2-D pro-
jection. This interpretation tree is pruned later for physically implausible
poses. Chen and Lee’s assumption of six known feature points on the head to
start the procedure and the overhead of the interpretation tree makes their
approach somewhat unappealing for practical applications. Zhao [87] has a
similar problem formulation but does not maintain the interpretation tree,
considering instead only one pose at the time. He monitors when spatial
ambiguities are encountered and disambiguates them by temporal coher-
ence. Holt et al. [37] provide a constraint propagation scheme for human
gait, where one joint remains at a fixed location. Motion constraints are
also incorporated at the earliest stages. The core of their system involves
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solving a polynomial system of equations. Other approaches have imposed
general constraints on the articulated motion, such as the “fixed-axis” [82]
or “in-plane” [35] assumptions of rotations.

Hel-Or and Werman [33] describe a technique for articulated pose recov-
ery based on the fusion of constraints and measurements using a Kalman
filter framework. Kakadiaris and Metaxas [42] [43] use a physics-based ap-
proach where various forces act on the different parts to align them with the
image data; constraint forces enforce point-to-point connectivity between
the parts. They apply this approach to multi-camera tracking and, addi-
tionally, deal with the problem of active camera selection based on body-part
visibility and motion observability.

Other approaches to 3-D articulated motion use parametrized models
where the articulation constraints are encoded in the representation itself.
This has the advantage that each representable state represents a physically
valid pose (aside from joint-angle limitations and collisions); thus, the re-
sulting approach takes advantage as much as possible of prior 3-D knowledge
and relies as little as possible on error-prone 2-D image segmentation. On
the downside, by considering the (coupled) parameters simultaneously, one
needs to work in a high dimensional parameter space.

One approach using such parametrized models [21] [29] [69] [70] [81] [85]
[87] updates pose by inverse kinematics, a common technique in robot con-
trol theory [76]. The state space maps onto image space by a non-linear
measurement equation which takes into account the coordinate transforma-
tions at various articulation sites and the 3-D to 2-D projection. Inverse
kinematics involves inverting this mapping to obtain changes in state pa-
rameters which minimize the residual between projected model and image
features. The procedure involves a linearization of the measurement equa-
tion, as defined by the Jacobian matrix, and a gradient-based optimization
scheme. The inverse kinematics approach can also be taken with multiple
cameras when no feature correspondence between cameras is assumed. One
simply concatenates the residual from the available camera views; see for
example [70].

Another approach using parametrized models does not attempt to invert
a non-linear measurement equation. Instead, it uses the measurement equa-
tion directly to synthesize the model and uses a fitting measure between
synthesized and observed features for feedback; see [22] [26] [36] [46] [58]
[64] [71]. Pose-recovery can then be formulated as a search problem which
entails finding the pose parameters of a graphical human model whose syn-
thesized appearance is most similar to the actual appearance of the real
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human. Because one need not to invert a measurement equation, one is
quite flexible in choosing an appropriate evaluation measure between model
and scene; typical measures are based on occluding contours or regions.
No point correspondences between model and scene are required. To find a
good fit, Ohya and Kishino [58] use a global search strategy based on genetic
algorithms. Kuch and Huang [46] use a greedy search strategy based on per-
turbation of individual state parameters. Gavrila and Davis [26] use local
search based on best-first search. The high-dimensional search space, which
results from recovering whole-body pose, necessitates in the latter work a de-
composition technique, in which pose-recovery is done successively for torso
(without twist), arms and torso twist, and legs. Some of the combinatoric
pose-recovery approaches have also been applied to the multi-camera case,
in simulations [58] and with real data [26].

Comparing the above greedy gradient-based inverse kinematics approaches
with the non-greedy combinatoric search approaches, one notes that the for-
mer have the advantage that they exploit gradient cues in the vicinity of a
minimum and therefore are computationally more efficient, see for example
[69]. On the other hand, concern is justified that a gradient-based scheme
might get stuck in a local minimum (i.e. to converge to a sub-optimal or
undesired solution) because the measurement equation is highly non-linear
(composition of various non-linear rotation matrices and perspective map-
ping) and the sampling ratio at which one obtains image measurement is
relatively low for fast movement such as locomotion and gesticulation. Fur-
thermore, measurements are typically noisy and can be incorrect altogether,
e.g. when corresponding the features with the wrong body parts. A non-
greedy search method also promises to be more robust over time; if it fails
to find a good solution at time ¢, there is still a chance that it may recover
at time t + 1 if the search area is sufficiently wide. A combination of non-
greedy search followed by a gradient-based technique is probably a good
compromise between robustness and efficiency.

There has also been work on using depth data for articulated pose re-
covery. Rather than requiring the typical point features, Azarbayejani and
Pentland [4] “triangulate” using blob features [84]; a 3-D blob (shape, orien-
tation) is recovered from a pair of corresponding 2-D blob features using non-
linear estimation techniques. In other work, Pentland [62] fits deformable
superquadrics to range data. A maximum-likelihood technique provides the
initial part segmentation based on the object silhouette. The subsequent
fitting procedure deformes superquadrics using modal dynamics.

Finally, work by Heap and Hogg [31] involves an example-based approach
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to articulated pose recovery. Their method involves a principal component
analysis of 3-D positional (hand) data and allows shape deformations of a
tracked object. This method was mentioned earlier in the 2-D context; see
Section 3 [8].

5.3 Feature correspondence

A variety of features can be used to establish correspondence between model
and image remains, from low-level to high-level. Using high-level features
(e.g. joint locations) simplifies pose recovery but places a greater burden on
segmentation. Approaches [17] [37] [60] [74] [87], which use joint locations
as features and assume these are given make strong assumptions. In reality,
the joints are hard to detect; no characteristic intensity distribution exists
at their location; rather, joints are localized indirectly by segmenting the ad-
joining body parts. Moreover, relying exclusively on a few correspondences
makes the resulting approach [21] [69] quite sensitive to occlusion.

This has lead many researchers to consider low- or intermediate-level
features to establish correspondence between model and image. Some use
occluding contours, where the evaluation measure for the model-to-image fit
is based on image regions in the neighborhood of the projected model con-
tours. Typical measures are correlation on a raw or smoothed LOG-filtered
image [29] [70], perpendicular- [31] and chamfer-distance [26] (from pro-
jected model edges to image edges) and straight-line distance metrics [71].
Others have used evaluation measures derived from the regions correspond-
ing to the projected body-parts, e.g. based on image intensities [46] [81] or
optical flow [85]. A distinction between low and intermediate features can
be made, as before, based on the segmentation effort involved to extract the
features. Image intensities and optical flow can be considered low-level, and
features derived by thresholding or perceptual grouping, intermediate-level.

What the best trade-off between segmentation effort and ease of pose
recovery is difficult to determine. For example, a method which matches
model and image edges based on a distance map approach (e.g. perpen-
dicular or chamfer distance) has the advantage that the evaluation measure
tends to be smooth in terms of the pose parameters; the measure is well
suited to guide an iterative estimation process. A correlation measure on
the unsegmented image, on the other hand, typically provides strong peak
responses but rapidly declining off-peak responses. But then, no edge seg-
mentation is needed for the latter. What might be worth considering is us-
ing intermediate-level features to provide a rough correspondence between
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model and image, and guiding the fine-tuning with low-level features.

5.4 Experimental results

This section reviews previous work on 3-D tracking in terms of experimental
results on real data. Dorner [21] tracks articulated 3-D hand motion (palm
motion and finger bending/unbending) with a single camera. Her system
requires colored markers on the joints and cannot handle occlusions. Rehg
and Kanade [69] do not require markers. Their “DigitEyes” system tracks
an 8-DOF partial hand model (movement of palm in a 2-D plane and three
fingers) with one camera and a full 27-DOF hand model with two cameras
in real-time from the hand silhouette. Occlusion cannot be handled at this
point. See Figure 12. A later version of the system [70] does tolerate partial
occlusion; a successful tracking example is shown where one finger moves
over the other finger, with the rest of the hand fixed. Heap and Hogg [31]
show preliminary tracking results on hand model and hand pose recovery.

In terms of experimental results on whole (or upper body) movement
using a single camera, Hogg [36] and Rohr [71] deal with the restricted
movement of gait (parallel to image plane). The movement is essentially
in 2-D with no significant torso-twist. Given that gait is modeled a priori,
the resulting search space is one-dimensional. Downton and Drouet [22]
attempt to track unconstrained upper-body motion but must conclude that
tracking gets lost due to propagation of errors. Goncalves et al. [29] track
one arm while keeping the shoulder fixed at a known position. Other results
use multiple cameras. Kakadiaris and Metaxas [43] track one arm using
three orthogonal cameras. See Figure 13. Azarbayejani and Pentland [4]
obtain the 3-D locations of the face and hands by essentially triangulating on
blobs representing the skin regions in the stereo views. Perales and Torres
[64] describe a multi-view camera system for whole-body tracking which
requires input from a human operator. Finally, Gavrila and Davis [25] [26]
show initial results on whole-body tracking using four cameras placed in the
corners of a room; see Figure 14.

In the above approaches working with real data it has often been diffi-
cult to quantify how good the 3-D pose recovery results are; typically, no
ground truth has been established. This problem is alleviated somewhat in
approaches which use multiple camera views; here one can at least visually
verify the recovered pose along the depth dimension.
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6 Action recognition

The prevalent view towards action recognition has been to consider it simply
as a classification problem involving time-varying feature data; the feature
data is derived from an earlier segmentation stage, using techniques of the
last three sections. Recognition then consists of matching an unknown test
sequence with a library of labeled sequences which represent the prototypical
actions. A complementary problem is how to learn the reference sequences
from training examples. Both learning and matching methods have to be
able to deal with small spatial and time scale variations within similar classes
of movement patterns.

Polana and Nelson [65] detect periodic activity such as persons walk-
ing lateral to the viewing direction using spatio-temporal templates. They
argue that a template matching technique is effective here because a suf-
ficiently strong normalization can be carried out on the region of interest
with respect to spatial and time scale variations. For example, for the case
of a stationary camera and a single object of interest, background subtrac-
tion and size normalization of the foreground region is sufficient to obtain
spatial invariance, if perspective effects are small. Polana and Nelson also
describe a technique to deal with the more complex case of a moving cam-
era and/or multiple (overlapping) objects, based on detecting and tracking
independently moving objects. Size changes of the object are handled by
estimating the spatial scale parameters and compensating for them, assum-
ing the objects have a fixed height throughout the sequence. Temporal scale
variations are factored out by detecting the frequency of an activity. After
these normalizations, spatio-temporal templates are constructed to denote
one generic cycle of activity; a cycle is divided into a fixed number of sub-
intervals for which motion features are computed. The features of a generic
cycle are obtained by averaging corresponding motion features over multiple
cycles. Temporal translation is handled in the matching stage in an exhaus-
tive manner; the test template is matched with the reference template at all
possible temporal translations. Matching uses a nearest centroid algorithm.

Rangarajan et al. [68] match motion trajectories of selected feature
points on a human body (tracked manually). Their trajectories are de-
scribed in terms of two one-dimensional signals, speed and direction. These
one-dimensional signals are each converted into a two-dimensional represen-
tation, the scale-space, by computing the degree of zero-crossing of the orig-
inal one-dimensional signal. The resulting representation has the advantage
of being translation and rotation invariant. Using a Gaussian convoluted
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reference scale-image, one can account for a fixed amount of time-offset be-
tween reference and test trajectory.

Goddard [28] represents activities by scenarios: a sequence of events
with enabling conditions, and time constraints between successive events.
Each possible scenario is matched and given a measure of appropriateness,
depending on the cumulative confidence in the scenario, the likelihood that
its “next” event has occured, and the time-constraints. No learning takes
place in the previous two methods.

Campbell and Bobick [13] use a phase-space representation in which the
velocity dimensions are projected out, discarding the time component of the
data altogether. This makes the learning and matching of patterns simpler
and faster, at the potential cost of an increase in false positives.

Other general techniques for matching time-varying data have been used
as well. Dynamic Time Warping (DTW) [55] is a well-known technique to
match a test pattern with a reference pattern if their time scales are not
perfectly aligned but when time ordering constraints do hold. If the sizes
of the test pattern and reference pattern are N and M, an optimal match
is found by dynamic programming in O(N x M?) time (or in O(N x M)
time, if one introduces local continuity constraints, see [55]). Because of
conceptual simplicity and robust performance, Dynamic Time Warping was
extensively used in the early days of speech recognition, and more recently
in matching human movement patterns [10] [19] [25] [78].

More sophisticated matching of time-varing data is possible by employ-
ing Hidden Markov Models (HMMs) [67]. HMMs are non-deterministic
state machines which, given an input, move from state to state according
to various transition probabilities. In each state, HMMs generate output
symbols probabilistically; these need to be related to image features in an
application-dependent manner. The use of HMMs involves a training and a
classification stage. The training stage consists of specifying the number of
(hidden) states of a HMM and optimizing the corresponding state transition
and output probabilities such that generated output symbols match the im-
age features observed during examples of a particular motion class; a HMM
is needed for each motion class. Matching involves the computation of the
probability that a particular HMM could have generated the test symbol
sequence which corresponds to the observed image features.

The ability to learn from training data and to develop internal repre-
sentations under a sound mathematical framework make HMMs attractive
when compared to DTW. Another advantage of HMMs are their ability
to deal with unsegmented data, i.e. dealing with continuous data streams
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where the beginning of a desired data segment is unknown (DTW could be
adapted to handle this as well; see Continuous Dynamic Time Warping [78]).
Because of these benefits, HMMs are currently widespread in speech recog-
nition and more recently in matching human movement patterns [77] [86]. A
less investigated but equally interesting approach for matching time-varying
data is given by Neural Networks (NN) [30] [72].

With all the emphasis on matching time-varying data, one should note
that another aspect of human action recognition is static posture; sometimes
it is not the actual movement that is of interest but the final pose (for
example, pointing). Herman [34] describes a rule-based system to interpret
body posture given a 2-D stick figure. Although the actual system is applied
on a toy problem (in baseball), it does make the point of using qualitative
pose measures together with other attributes such as facing direction and
contact. It also emphasizes the importance of contextual information in
action recognition.

Finally, work by Kollnig et al. [45] goes beyond the narrow interpretation
of action recognition as a classification problem. They investigate ways of
describing scene motion in terms of natural language (“motion verbs”); this
is achieved within a logic-based framework. Their particular application is
vehicle motion in traffic scenes. See also work by Mohnhaupt and Neumann

[54].

7 Discussion

Table 2 lists the previous work on the analysis of human movement, which
was discussed in this survey. Whether to pursue a 2-D or a 3-D approach is
largely application-dependent. A 2-D approach is effective for applications
where precise pose recovery is not needed or possible due to low image reso-
lution (e.g. tracking pedestrians in a surveillance setting). A 2-D approach
also represents the easiest and best solution for applications with a single
human involving constrained movement and single viewpoint (e.g. recog-
nizing gait lateral to the camera, recognizing a vocabulary of distinct hand
gestures made facing the camera).

A 3-D approach makes more sense for applications in indoor environ-
ments where one desires a high level of discrimination between various un-
constrained and complex (multiple) human movements (e.g. humans wan-
dering around, making different gestures while walking and turning, social
interactions such as shaking hands and dancing). It is unlikely that this
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2-D approaches without
explicit shape models

2-D approaches with
explicit shape models

3-D approaches

Baumberg and Hogg [8]
Bobick and Wilson [10]
Charayaphan and Marble [16]
Cootes et al. [18]

Darell and Pentland [19]
Davis and Shah [20]
Franke et al. [23]
Freeman et al. [24]
Heisele et al. [32]

Hunter et al. [38]
Johansson [39]

Kjeldsen and Kender [44]
Oren et al. [59]

Polana and Nelson [65]
Quek [66]

Rangarajan et al. [68]
Segen and Pingali [73]
Shio and Sklansky [75]
Starner and Pentland [77]
Takahashi et al. [78]
Tamura and Kawasaki [79]
Turk [80]

Yamato et al. [86]

Akita [3]

Cai and Aggarwal [11]
Chang and Huang [15]
Geurtz [27]

Goddard [28]

Guo et al. [30]

Herman [34]

Ju et al. [40]

Kurakake and Nevatia [47]
Leung and Yang [48]

Long and Yang [49]
Niyogi and Adelson [56] [57]
Wren et al. [84]

Azarbayejani and Pentland [4]
Campbell and Bobick [13]
Chen and TLee [17]

Dorner [21]

Downton and Drouet [22]
Gavrila and Davis [25] [26]
Goncalves et al. [29]

Heap and Hogg [31]

Hel-Or and Werman [33]
Hoffman and Flinchbaugh [35]
Hogg [36]

Holt et al. [37]

Kahn and Swain [41]
Kakadiaris and Metaxas [42] [43]
Kuch and Huang [46]

Ohya and Kishino [58]
O’Rourke and Badler [60]
Pentland [62]

Perales and Torres [64]

Rehg and Kanade [69] [70]
Rohr [71]

Shakunaga [74]

Wang et al. [81]

Webb and Aggarwal [82]
Yamamoto and Koshikawa [85]
Zhao [87]

Table 2: A selection of previous work on the visual analysis of human move-

ment
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can be achieved by a purely 2-D approach; a 3-D approach leads to a more
accurate, compact representation of physical space which allows a better
prediction and handling of occlusion and collision. It leads to meaning-
ful features for action recognition, which are directly linked to body pose.
Furthermore, 3-D recovery is often required for virtual reality applications.

2-D approaches have shown some early successes in the analysis of human
movement. In some cases these successes were obtained relatively easily; for
example, some work on motion-based recognition involved classification of
a few, well separable, motion classes for which a multitude of features and
classification methods could have been applied to obtain good results. In
other cases, the application involved seemingly complex activities [65] [77]
with no straightforward recognition solution. A main design choice for 2-D
systems has been whether to use prior explicit models or to take a learning
approach. It has been especially important for systems without explicit
shape models to be able to accurately determine the foreground region in
the image. Techniques based on background subtraction, color spotting,
obstacle detection and independent motion detection have all been employed
to provide this initial segmentation. Another issue for these systems has
been the proper normalization of the features extracted from this foreground
region, with respect to both the spatial and time dimension. Examples have
included the use of scaled image grids and detection of periodicity. One of
the challenges of 2-D systems on the topic of pose recovery is to show that
they scale up to unconstrained movement.

It is fair to say that the results of vision-based 3-D tracking are still lim-
ited at this point. Few examples of 3-D pose recovery on real data exist in
the literature and most of these introduce simplifications (e.g. constrained
movement, segmentation) or limitations (e.g. processing speed) that still re-
quire improvement with respect to robustness. Robust 3-D tracking results
have been particularly scarce for approaches using only one camera. The
benefit of using multiple cameras to achieve tighter 3-D pose recovery has
been quite evident [26] [43] [69]; body poses and movements that are am-
biguous from one view (by occlusion or depth) can be disambiguated from
another view. The added calibration effort has been worthwhile.

There are a number of challenges that need to be resolved before vision-
based 3-D tracking systems can be deployed widely.

e The model acquisition issue. Almost all previous work assumes that
the 3-D model is fully specified a priori and only addresses the pose
recovery problem. In practice, the 3-D model is parametrized by var-
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ious shape parameters that need to be estimated from the images.
Some work has dealt with this issue by decoupling model acquisition
and pose recovery, i.e. requiring a separate initialization stage where
either known poses [26] or known movements [42] simplify the acqui-
sition of the shape parameters. Although work in [42] represents a
step forward on this matter, no approach has been provided that can
recover both shape and pose parameters from uncontrolled movement,
e.g. the case of a person walking into a room and moving freely around.

e The occlusion issue. Most systems cannot handle significant (self)
occlusion and do not provide criteria when to stop and restart tracking
of body parts. There is no notion of pose ambiguity either.

e The modeling issue. Human models for vision have been adequately
parametrized with respect to shape and articulation, but few have
incorporated constraints such as joint angle limits and collision, and
even less have considered dynamical properties such as balance. In
contrast to graphics applications, they have made little or no use of
color and texture cues to capture appearance. Lacking entirely is the
ability to deal with loose-fitting clothes. Finally, there is also a need
to model the objects the human interacts with.

e Using ground truth. A quantitative comparison between estimated
and true pose is very important to evaluate and compare systems. For
simulations to be realistic, they have to include modeling, calibration
and segmentation errors. Even better is obtaining ground truth on
real data using markers and active sensing.

e Using 3-D data. Few systems (e.g. [62]) have used range data so far,
given sensor-related drawbacks (e.g. high cost, low resolution, limited
measuring range, safety concerns). Also, relatively few systems (e.g.
[4] [41]) have obtained 3-D data by passive sensing techniques (i.e.
triangulation) without relying on markers. Combining the use of 3-D
data with some of the monocular techniques described in the previous
Sections is likely to alleviate a number of problems related to figure-
background separation, model acquisition and model fitting.

For both 2-D and 3-D approaches, the issue of tracking versus initializa-
tion remains open. Most work only deals with incremental pose estimation
and does not provide ways for bootstrapping, either initially or when track-
ing gets lost. But it is the availability of an easy initialization procedure,
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which can be started up from a wide range of situations, what makes a
system robust enough to be deployed in real world settings (e.g. [84]).

Another desirable extension to past work is the ability to detect and track
multiple humans in the scene (one might even try crowds). Naive techniques
which rely on background subtraction to obtain a segmented human figure,
will no longer be feasible here. Stronger models might be necessary to handle
occlusion and the correspondence problem between features and body-parts.

Action recognition is also an area which could welcome further attention.
Particularly interesting is the question of whether a set of generic human
actions can be defined which can be applied to a variety of applications.
These generic actions might include those given in Table 3; a distinction
is made between stand-alone actions and interactions with objects or other
people. If indeed such a useful set of generic actions can be defined, would it
be possible to identify corresponding features and matching methods which
are, to a large degree, application-independent?

The classification of various actions also facilitates the introduction of a
symbolic component on top of the image processing in order to reason about
the scene. A variety of logic-based approaches come to mind for implement-
ing this (e.g. conventional first-order logic, fuzzy logic, temporal logic). The
connection from the sensory to the symbolic level can be provided by action
recognizers such as those described in Section 6. The connection in the op-
posite direction, from symbolic to sensory level, also seems very useful; this
would allow controlling what vision tasks are to be executed. For example in
some person-tracking application, one might want to alternate the tracking
mode from a fine-scale (with each body part tracked) to a coarse scale (with
human body considered as a whole), depending on context.

Finally, it will be important of test the robustness of any of the resulting
systems on large amounts of data, many different users, and in a variety of
environments.

8 Conclusions

The visual analysis of human movement has become a major application
area in computer vision. This development has been driven by the many
interesting applications that lie ahead in this area and the recent techno-
logical advances involving the real-time capture, transfer and processing of
images on widely available low-cost hardware platforms (e.g. PCs).

A number of promising application scenarios were discussed: virtual real-
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Stand-alone

Interactions

Interactions

sitting (down)
standing (up)

drinking, eating
writing, typing

Actions with objects with people
walking grasping, carrying, putting down shaking hands
running examining embracing, kissing
jumping transferring (from one hand to another) | pushing

turning around | throwing hitting

bending over dropping

looking around | pushing

squatting hitting

falling shaking

climbing
pointing
waving

clapping

Table 3: A sample of action verbs

ity, surveillance systems, advanced user interfaces and motion analysis. The
scope of this survey was limited to the analysis of human gesture and whole-
body movement; three main approaches were discussed: 2-D approaches
without explicit shape models, 2-D approaches with explicit shape models
and 3-D approaches. It was argued that which of the above approaches
to pursue depends on the application; some general guidelines were given.
Action recognition was considered in the context of matching time-varying
feature data.

Although one appreciates from this survey the large amount of work that
already has been done in this area, many issues are still open, e.g. regarding
image segmentation, use of models, tracking versus initialization, multiple
persons, occlusion and computational cost. One of the challenges for 2-D
systems is to show that the approaches scale up to allow pose recovery for
large set of movements from different viewpoints. 3-D systems still have to
resolve issues dealing with model acquisition, detail of modeling and obtain-
ing ground truth. Scenes, such as Figure 15, are far too complex currently.
An interesting question is whether a set of generic human actions can be
defined which are useful across applications and if so, what the features
of interest would be. Added functionality and performance is likely to be
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gained by adding a symbolic component on top of the image processing to
reason about the scene and control image tasks. Work on different sensor
modalities (range, infrared, sound) will furthermore lead to systems with
combined strengths.

By addressing the above issues, vision systems will have improved ca-
pabilities to successfully deal with complex human movement. This might
transform the “Looking at People” domain into the “Understanding People”
domain.
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Figure 1: Detection of periodic activity using low-level motion features (from
Polana and Nelson [65], (© 1994 IEEE).

Figure 2: Detecting frontal and rear views of pedestrians; (a) the features:
vertical, horizontal and corner wavelet coefficients (b) the detection results

using the SVM classifier (from Oren et al. [59], © 1997 IEEE).
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Figure 3: Principal component analysis on a data set of pedestrians repre-

sented by B-splines; shown is the shape variation along the principal com-
ponent. (from Baumberg and Hogg [8], © 1994 IEEE).

Figure 4: Principal component analysis on a data set of pedestrians repre-
sented by images of size 30 by 50 pixels; shown are eigenvectors 0 (mean),
1, 2, and 25, in order of decreasing eigenvalues (from Franke et al. [23]).

Figure 5: Tracking pedestrians with the Color Cluster Flow (from Heisele,
Kressel and Ritter [32], © 1997 IEEE).
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Figure 6: A 2-D stick-figure model fleshed out with ribbons (from Leung
and Yang [48], © 1995 IEEE).

Figure 7: (a) One image of a sequence with walking people (b) various slices
in the XYT volume reveal characteristic patterns (from Niyogi and Adelson

[57], © 1994 IEEE).
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Figure 8: Original images, ribbon detection and body part labeling using
the First Sight system (from Leung and Yang [48], © 1995 IEEE).

Figure 9: Detecting and tracking human “blobs” with the Pfinder system,
(work by Wren et al. [84] ).
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Figure 10: Model-based tracking (adapted from O’Rourke and Badler [60]).

Figure 11: 3-D human models “ELLEN” and “DARIU” using tapered super-
quadrics (from Gavrila and Davis [26], © 1995 IEEE).
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(a) (b) ()

Figure 12: Hand tracking with the DigitEyes system (a) multi-camera setup
(b) motion estimate superimposed on one of the two camera views (c) cor-
responding pose of 3-D hand model (from Rehg and Kanade [69], (© 1994
Springer-Verlag).
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Figure 13: Multi-camera arm tracking: original images, recovered arm model
and application to a whole-body graphical model (from Kakadiaris and
Metaxas [43], © 1996 IEEE).
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Figure 14: Multi-camera whole-body tracking; the current pose of the 3-D
model is superimposed onto the four camera views (from Gavrila [25]).

Figure 15: Will the Argentine Tango be danced in virtual reality? (from
Gavrila and Davis [26], © 1996 IEEE).
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